Reg. No. :					
------------	--	--	--	--	--

Question Paper Code: 20926

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2023.

Third Semester

Electronics and Communication Engineering

EC 3353 — ELECTRONIC DEVICES AND CIRCUITS

(Common to Electronics and Telecommunication Engineering)

(Regulations 2021)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. A Ge diode has a saturation current of $10\,\mu\mathrm{A}$ at 300K. Find the saturation current at $400^{\circ}\mathrm{K}$
- 2. A full-wave rectifier uses two diodes, the internal resistance of each diode may be assumed constant at 20 Ω . The transformer R.M.S. secondary voltage from Centre tap to each end of secondary is 50 V and load resistance is 980 Ω . Evaluate (a) The mean load current (b) The R.M.S. value of load current.
- 3. An amplifier operating from ±3V provide a 2.2V peak sine wave across a 100 ohm load when provided with a 0.2V peak sine wave as an input from which 1.0 mA current is drawn. The average current in each supply is measured to be 20mA. What is the amplifier efficiency?
- 4. Define current amplification factor.
- 5. Write the hybrid parameters equation for transistor amplifier?
- 6. Which type of connection is made for cascode amplifier?
- 7. What is transition and diffusion capacitance?
- 8. State Barkhausen criterion for sustained oscillation. What will happen to the oscillation if the magnitude of the loop gain is greater than unity?

- 9. Determine the input impedance of a differential amplifier (emitter coupled) with RB = 3.9 $k\Omega$ and ZB = 2.4 $k\Omega$.
- 10. What is DC-DC bidirectional converter?

PART B — $(5 \times 13 = 65 \text{ marks})$

- 11. (a) (i) Explain the V-I characteristics of PN junction diode. (7)
 - (ii) Explain the principle of operation of a full wave rectifier. (6)

Or

- (b) How is Zener diode used as voltage regulator? Explain the working principle Zener voltage regulator.
- 12. (a) Derive the equations for voltage gain, current gain, input impedance and output admittance for a BJT using low frequency h-parameter model for (i) CE configuration (ii) CB configuration and (iii) CC configuration.

Or

- (b) (i) Explain the operation of power transistor.
 - (ii) Describe two applications of BJT.
- 13. (a) An amplifier rated at 40W output is connected to a 10 Ω speaker.
 - (i) Calculate the input power required for full power output if the power gain is 25 db. (7)
 - (ii) Calculate the input voltage for rated output if the amplifier voltage gain is 40 db. (6)

Or

- (b) What is differential amplifier and explain any one type in detail.
- 14. (a) Give a thorough explanation of all feedback amplifier classification.

Or

- (b) Explain pierce crystal oscillator and derive the equation for oscillation.
- 15. (a) In an amplifier, the output power is 1.5 watts at 2 kHz and 0.3 watt at 20 Hz, while the input power is constant at 10 mW. Calculate by how many decibels gain at 20 Hz is below that at 2 kHz.

Or

(b) What is boost converter and buck converter? How does a buck-boost circuit work?

PART C — $(1 \times 15 = 15 \text{ marks})$

16. (a) The four semiconductor diodes used in a bridge rectifier circuit have forward resistances which can be considered constant at $0.1\,\Omega$ and infinite reverse resistances. They supply a mean current of 10 A to a resistive load from a sinusoidal varying alternating supply of 20 V RMS. Determine the resistance of the load and efficiency of the circuit.

Or

(b) Draw and explain the operation of a Hartley oscillator derive the equation for Fr and Hje.